投期刊-创作、查重、发刊有保障。

初等教育数学论文5500字_初等教育数学毕业论文范文模板

发布时间:2021-02-23 12:00

  导读:想要撰写初等教育数学论文5500字,你做好相关的准备工作了吗?相信不管是撰写什么类型的论文,大家应该都是会去大量的参考相关的文献资料的吧,本文分类为教育数学论文,下面是小编为大家整理的几篇初等教育数学论文5500字范文供大家参考。


  初等教育数学论文5500字(一):高等数学思维融入到初等数学教育的实证分析论文


  摘要高等数学思维的形成始于数学的学习之初,因此从初等教育阶段,开始引导学生进行严密的、具有逻辑性、且发散的高等数学思维方式是非常有必要的。从几个实证分析说明,小学生不仅能接受、而且非常喜欢高等数学的思维方式,此类的探索将对我国未来义务教育产生深远的意义。


  关键词:高等数学思维;初等数学教育;逻辑性;严谨


  0引言


  数学是一门从义务教育开始直至高等教育甚至持续终身的基础学科。大部人都认为初等数学尤其是小学数学与高等数学相差甚远,事实上它们之间不仅在内容、而且在思维上都存在密切联系。Tall(1991)是一位从事中小学数学教育的数学家,他提出了数学的三个世界的观点。这个理论完全符合数学发展的特点以及人类的认知发展规律。他在著作《高等数学思维》中告诉人们,高等数学是抽象的,而对应的相对具体的概念是初等数学阶段就逐渐熟悉的,也就是说高等数学思维不仅仅是高中以后才开始的事情,它完全可以浸入到小学一年级的学习。这就要求初等数学的教师尤其是小学一年级的数学教师,尽早从数学的严密性、逻辑性等特点,去帮助学生自己建构起数学思想,甚至是高等数学思想。


  在我国初等教育阶段,基础课的授课老师是由热爱这个学科、充分接受过该学科高等教育、同时有基本的儿童心理学的人来担任。目前承担我国基础教育尤其是小学教育的老师,大都来自师范类学校。他们的优点在于有充分的儿童心理学知识,对学生有爱心,这在小学低龄阶段确实是最重要的。但是由于教学内容的限制以及部分教师的全局数学素养欠缺,不能引导学生建立起全局的知识观,这也是目前针对义务教育的课外兴趣班遍地开花的原因之一。好在,很多民办小学、公办小学的兴趣课,已经有向强调知识的系统性这个方向发展的趋势了。引导学生探究每门学科的本质,支持学生犯错、不轻易相信书上写的结论,才是我们应该给予孩子的教育环境。


  1实证分析


  小学生的思维特点是非常具体的,他们思考问题时相信自己看到的事实,而不是老师说的结论。作为教师,要回答孩子们提出的任何“为什么”,比如“1+1为什么等于2”等等。如果教师本人学术造诣不够,对解释不了的问题进行无法自圆其说的科普,将会对孩子的兴趣造成巨大伤害,会被认为是在用老师的身份强行灌输。每一个孩子都像一块美玉需要老师去雕琢,虽然不是每个孩子都有数学的天赋,但是引导每一个孩子体验到数学的魅力,是教学的一大难点,也是挖掘孩子身上数学天赋的必经之路。笔者尝试在两所公办小学、一所民办小学担任了一周一次的数学兴趣课老师,将高等数学的思维融入到初等数学的教学中,收获颇多。整理了以下几个数学概念的实例。


  1.1无穷与有限


  小学低年级阶段的学生,对自然数的概念可以尝试达到两个认识上的飞跃:从正整数到0到负整数的认识,以及从有限到无穷的认识。


  问题一:如果不一一数清楚,怎样判断两个学生的笔袋里的笔谁更多?


  学生回答:两个人依次从自己的笔袋里拿一支笔出来,谁先取完,而对方还能拿出下一支来,则谁的笔少。如果同时取完则两人笔一样多。


  这显然是一个很简单的能够比较出谁的笔更多的做法。


  问题二:偶数和自然数谁更多?


  学生提出了两个似乎都对的结论:


  结论一:一个偶数1,能对应一个自然数2;一个偶数2,能对应一个自然数4;一个偶数3,能对应一个自然数6…以此进行下去,和刚才取笔的做法一致,偶数堆里拿一个来,自然数堆里都能够拿出相应的一个来应对,所以它们是一样多的。


  结论二:自然数除了偶数还有奇数,所以偶数个数加奇数个数才是自然数个数。所以自然数比偶数多。


  孩子们有争论,最后老师和学生能够达成一致的是,如果某一事物,双方都是有限个,那就能比较多少;如果一方是有限个,一方是无穷多个的话,那有限的一方一定会先取完,它一定是少的那方;如果双方都是无穷多个的话,那就没法比较了。


  小学生当然不能理解“比较可数无穷和不可数无穷之间有没有意义、或者谁多谁少”,但是他们能理解可数无穷的字面意思——可以数!什么是可以数的?就是一个、两个、三个、四个等等,能够和自然数一样1、2、3、4等等可以一个个由小到大数出来的。


  1.2极限


  极限是高等数学的思维。大部分学生从高中才开始接触到极限,比如考虑等比数列的无穷多项求和、求平面曲线在一点处的切线斜率等问题。但是同样可以引导小学生作类似的思考。


  问题一:0.9999…和1如何比较大小?


  结论一:因为1-0.9999…=0.0000…1是大于0的数,所以0.9999…当然比1小。


  反驳:没有0.0000…1这个数。因为0.0000…1表示的是在无穷多个0后面加一个1,但是无穷多个0本身没有最后一个,也就没有“最后一个后面加一个1”的意义。


  结论二:0.9999…=1。因为在0.9999…和1之间不能夹任何数,使得这个数比0.9999…大且比1小。


  结论三:0.9999…=1。因为0.3…=1/3,所以0.9999…=1/3*3=1


  结论二和三都是小学生对这个问题的很好的理解。


  问题二:面积单位的定义和圆面积。


  首先引导低年级学生定义出面积(大小)的单位,比如1厘米*1厘米的正方形的面积就是1平方厘米。那么长度、宽度分别为a,b厘米(取整数)的矩形的面积可以通过分割得到是ab平方厘米。然后对长宽分别是0.5和4厘米的矩形,可以分割成4个0.5厘米*1厘米的矩形,再拼接成2*1厘米的矩形,所以它的面积是2平方厘米。由此可以得到长宽为a,b厘米的矩形面积是ab平方厘米。


  每个同学随机得到半径分别为5厘米、10厘米、20厘米的圆各5个(指圆盘,大多数小学生把圆周和圆盘都称为圆),将圆切割成无穷多个矩形,估算出每个圆的面积。同学们估算得到三种半径的圆的面积的平均值,然后寻找面积和半径的关系。无需计算,大多数同学都能猜到面积应该和半径的平方成比例,比例系数在2与4之间。通过计算,得到的圆面积/半径平方的比例最接近的是3.18。这就是圆周率的近似计算。


  1.3逻辑悖论


  类似于中国的自相矛盾,数学上也有类似悖论。比如,公元前四世纪的悖论:我现在说的是谎言。教师可以引导学生也讲出类似的悖论。


  学生举了自己从课外书上看到过的事例:(1)自相矛盾;(2)理发师自述,村子里所有不是自己理发的男人的头发都由我来理。


  在讲逻辑悖论这堂课中,几乎没有学生能自己想出悖论来,这完全符合他们的年龄特点。所以教师要以引导学生明白悖论的相互矛盾的两方面为目的。


  1.4定义决定结论


  任何事物都有两面性。根据定义的不同,结论也不同。比如,在高等数学中,“距离”一词不仅适用于直线、平面或者空间几何体,也适用于集合中的元素。


  问题一:如何来比较班里两个同学的头发谁长?学生讨论后出现了很多结论。


  结论一:找到两人最长的头发,谁的那根头发最长,他(她)的头发就最长;


  结论二:找到两人最短的头发,谁的那根头发最长,他(她)的头发就最长;


  结论三:比较两人的大多数头发,谁的大多数头发比另一个人长,他(她)的头发就最长。


  ……


  这些结论按照不同的定义下的结论都是对的。数学也没有标准的答案,只要有道理,都是合理的思路。当然这不是告诉孩子们“任何事情都可以颠倒黑白”,而是遇到问题可以用自己的逻辑方式严密思考。


  问题二:既然在空间中,两点之间直线段最短,那么在球面上呢?比如从中国上海到美国洛杉矶,飞机的航线怎么画才能使飞行路程最短呢?


  结论:学生通过观察标准球形的地球仪,在图像中画出了最短的距离,即我们理解的球面上的两点,走大圆最短。


  1.5推导


  同样的数学问题,在不同年龄阶段的学生看来,甚至同一个年龄阶段不同的学生看来,可能想法是完全不同的。教师需要尊重每个学生的想法,不能随意下结论判断“结论的对错”和“方法的简单、复杂”,把一些很有价值的奇思妙想扼杀在萌芽中。在小学数学课上,老师是把“三角形的内角和是180度”当作事实来使用的,教课书上采用的方法也是很直观的,通过三角形内一点,将三角形分成三个部分,然后重新组合成一条直线来得到三角形的三个内角构成了一个平角,所以是180度。但是有没有学生曾经问过为什么呢?


  问题:为什么三角形的内角和是180度?同理,为什么任意的凸边n形的内角和是180(n2)度呢?


  学生们的讨论之后得出的一些观点:


  结论一:一个直角是90度,那矩形内角和是360度。所以把矩形分成两个三角形,所以三角形内角和是180度。


  反驳:不对。只能说明直角三角形内角和是180度。


  结论二:把矩形拉成平时四边形,再分成两个三角形。这样的到的就是普通的斜三角形。


  反驳:不对。按问题描述,必须说明任意三角形的内角和都是180度才行。


  一个学生的证明方法:


  步骤一:画出任意的三角形,凸四边形,凸五边形,凸六边形等等,测量出每一个图形的所有的外角和,都约为360度。


  步骤二:由于任意的凸n边形的所有外角及内角和是180n度,所以内角和是180(n2)度。


  依然存在的问题:为什么测量得到有限个凸n边形的外角和是360度,就能说明任意的凸n边形的外角和就一定是360度呢?这种做法,和“测量有限个三角形得到三角形的内角和是180度”没有本质差别。


  步骤三:能否用归纳法证明任意的凸n边形的外角和一定是360度?


  反驳:证明过程中需要用到三角形的某一个外角等于它的不相邻的两内角和这个定理。而这个结论的证明似乎要用到三角形的内角和是180度。在做一些证明时,往往会在过程中已经不经意地用到了需要证明的结论,这是很常见的逻辑错误。


  这节课没有得到最后的结论,而且使同学陷入了原来“有些数学问题看似简单,但是却得不到合理的结论。”的苦恼,一直问“那该怎么办呢?”。


  一般来说,数学上的公理是不需要证明的,比如“1+1=2”,因为这就是2的定义;再比如欧几里得的有关平面几何的五条公理(包括公理5:若两条直线都与第三条直线相交,并且在同一边的内角之和小于两个直角和180度,则这两条直线在这一边必定相交),也是默认成立无需证明的。其他任何定理、命题、推论都可以通过公理以及已经证明成立的定理来证明。事实上,三角形内角和问题,在平面几何的发展过程中,我们由公理5推导出“若平行的两条直线与第三条直线相交,则内角之和等于两个直角”,再推导出“两直线平行,则内错角相等”,再推导出“三角形的内角和是180度。”


  1.6数学文化


  我们早就意识到数学是一门非常重要的基础学科,有些家长怕自己孩子的数学从小落后于别人,甚至从幼儿园起就会选择许多数学绘本给孩子开拓眼界,用游戏的方式培养孩子对数学的兴趣。父母都希望孩子能够首先对学习产生兴趣,接下来能够发自内心地熬过寒窗读书的辛苦,实现自己的理想。笔者认为,与其告诉孩子学习是快乐的,不如用讲故事的方式展示给他们看,历史上的基础学科工作者,为了得到我们今天看到的www.yulu.cc进步付出了多长时间的不求回报的努力。


  比如,数学家欧拉。他在59岁左右双目失明了。但是在此之后的17年,他依旧靠着强大的记忆力和心算能力,做出了很多重大贡献。他能够记住那个时代里所有重要的研究成果,能够复述年轻时候的工作笔记,甚至能够直接心算高等数学。此外,为了能让丈夫安心工作,他的妻子也为欧拉的成就做出了极大的贡献,抚育了家里的13个孩子及孙辈。


  比如,天文学家第谷布拉赫。他是最后一位也是最伟大的一位用肉眼观测的天文学家。1576年到1599年,第谷在丹麦与瑞典间的汶岛的天文台(丹麦国王为他建造的世界上最早的大型天文台)工作20多年,取得了一系列重要成果,创制了大量的先进天文仪器。在1577年通过对两颗明亮的彗星的观察,他得出了彗星比月亮远许多倍的结论,这一重要结论对于帮助人们正确认识天文现象,产生了很大影响。


  比如,俄国女数学家柯瓦列夫斯卡娅。她从小喜爱、擅长数学,有父亲的支持可以坚持学习,可是当时的俄国不允许女性接受高等教育。通过婚姻,她跟随丈夫来到德国,但是依然不被允许进入大学课堂。于是,她凭借出色的数学基础和热爱数学的坚韧精神,得到了数学家魏尔斯特拉斯课堂外的单独辅导。最后虽然柯瓦列夫斯卡娅本人没有在大学里上过一节课,但是却因为她的优秀论文得到了博士学位,也随后成了斯德哥尔摩大学的一位数学老师。


  2结论


  笛卡尔的《方法论》告诉每个一个学习数学乃至其他学科的人:


  (1)凡是我没有明确地认识到的真理,我绝不把它当成真的接受;


  (2)要研究的复杂问题,尽量分解为多个比较简单的小问题,一个一个地分开解决;


  (3)小问题从简单到复杂排列,先从容易解决的问题着手;


  (4)问题解决后,再综合起来检验,看是否完全,是否将问题彻底解决了。


  这几条基本的想法,看似平淡无奇,其实凝聚了前人千百年来的智慧,值得今天每一个科学工作者当做座右铭来恪守。


  数学成绩很多时候成为当作用来判断一个学生聪明或者笨的标准,这是不合理的,因为很多孩子的数学思维从一开始就被禁锢住了,他们的发散性思维被简单地用“错”而否定了,这是我们义务教育的弊端。


  数学发现并不是在基本公理上简单的逻辑推理演绎,而是在证明和反驳的过程中不断修正和完善的体系。今天学生们的看似幼稚的想法、做法,正是千百年来数学工作者们思想的必经之路。即使如数学这样建立在公理体系上的逻辑学,也不是完全确定的,仍然有极大的未知等待探索。不轻易否定孩子的思路,尊重他们的奇思妙想,引导他们开拓思维,是数学工作者的初心。


  初等教育数学毕业论文范文模板(二):MPCK视角下初等教育专业数学课程体系研究论文


  摘要:本研究以MPCK的理论基础,针对现阶段师范生在数学学习中存在的困难,以初等教育专业数学类课程为研究内容,对在校师范生、参加实习和顶岗实习以及往届毕业生作为访谈对象,采用文献法、问卷调查法、访谈法、观察法等方法对数学课程进行整合并进行课程实施,并对实施后的效果进行总结。


  关键词:MPCK;数学教学;课程设置;课程整合


  一、MPCK理论


  “领域教学知识”(简称PCK),是有关教学的特有知识体系,从操作的角度,它可以定义为三个维度的有机结合:教什么——教学内容知识,怎样教——教学方法的知识,以及教谁——教学对象的知识(Shulman,1987)。


  MPCK是学者们在PCK理论的基础上提出的,是指某一特定的数学内容该如何进行表述、呈现和解释,以使学生更容易接受和理解的知识,即教师的数学教学内容知识。它不仅继承了PCK对教师知识的深度整合,而且融合了数学学科和数学教学特殊性,使其成为数学教师所专有的PCK。MPCK模型涵盖三部分:数学学科知识(MathematicalKnowledge),一般教学法知识(PedagogicalKnowledge),有关数学学习的知识(ContentKnowledge)。


  所以说MPCK是“数学学科知识与教学法知识的特殊整合,是教师特有的知识,是教师对数学学科知识的特殊理解形式”。[1]基于MPCK理论,在数学课程的设置上要从小学数学教师教学的现状和困境出发,要去考虑教学对象(教学内容和学生)的真正需求,促进其持续性的专业发展。


  二、初等教育专业数学课程体系现状


  (一)数学基础课的课程现状


  数学课主要在第一学年、第二学年以及第三学年的上半年开设,主要内容包括高中数学的基本内容,是初等教育专业数学的基础课,内容包括:集合、函数、基本初等函数(Ⅰ)(Ⅱ)、立体几何初步、平面解析几何初步、三角函数、数列、不等式、平面向量、逻辑、圆锥曲线方程、复数、导数、概率初步等内容。但是课程开设时间过长,与现行的“3.5+1.5”的人才培养模式相矛盾,与初等数论在课程衔接上不连续。


  (二)初等数论的课程现状


  初等数论作为初等教育专业数学课程的基本专业课,主要在学生在校期间的第三年上学期开设。其主要内容包括整数的整除理论,同余理论,连分数理论和某些特殊不定方程。在校学生反映,数论很抽象,学起来很困难,尤其是解数论题目时常常会无从下手。我们现在使用的《初等数论》教材,它的结构完整,概念较多,内容叙述具有简洁性和系统性,推理论证具有逻辑性和严密性。但是初等教育专业的特点之一就是“定向性”,即人才培养面向小学教育,为小学培养合格的师资力量。同时,这门课的课时很有限,即每周2课时。在有限的课时内,不可能讲授系统的数论知识和完整的教材内容。因此,为了适应小学教育的需要,必须把握数论课教学内容的侧重点,对初等数论这门课程的各部分内容之间进行整合,以适应未来小学教育的需要。


  (三)数学教学类课程现状


  小学数学教学论和数学微格课程是初等教育专业数学课程的核心课程,都是在第四年开设。小学数学教学论内容主要是数学教学的相关理论,其中的基本教学理论多一些;微格课程主要是数学教学技能的训练和实践,特别是实践层面的内容多一些。从两门课程的实施过程中存在一个严重的问题,就是学生不能灵活运用数学教学理论,对小学数学课程进行教学设计和教学实践,即理论和实践之间存在严重的脱节问题。


  (四)高等数学课程现状


  高等数学在第四年开设,开设时间为一年,每周2课时。这门课程主要以微积分、极限为主要内容。在课程的考核上以笔试为主。由于本门课程多为证明、计算,学生经常反映内容过难不理解,解题中无从下手。另外,在对一线小学数学教师的调查中,多数教师认为高等数学这门课程对他的教学影响最小。


  三、基于MPCK的初等教育专业数学课程的整合


  (一)基于MPCK数学课程整合的意义


  1.适应《义务教育数学课程标准(2011年版)》的需要。高职院校的初等教育专业,主要以培养小学教师为目标。在新课程的背景下,小学数学课程的教育在理念、目标、内容结构以及其呈现方式等方面都发生了重大的转变,数学教育特别是低年级的数学教育不是以数学学科的思维结构来组织和呈现,而是强调数学教育应按照数学发展的脉络进行,关注数学与生活的联系和应用。对于数学相关课程进行有机整合,有助于高等职业院校初等教育专业学生数学的培养,促进其作为小学数学教师的专业素质提升。


  2.根据初等教育专业人才培养目标的需要。高职院校学生的培养模式是毕业即能上岗的“快餐式”人才培养模式。这就要求学校与用人单位之间做到“无缝”对接。而如何实现“无缝”,就是要强化学生的实践能力。根据初等教育专业人才培养目标,毕业生主要是从事小学阶段的教学工作。加强准教师的数学教学知识(MPCK)是提升其教师专业素养的必经之路。基于MPCK视角,其意义不仅仅在于数学学科知识与数学学科教学知识的融合,更是理论与实践的有机结合。[2]


  3.现阶段的初等教育专业数学课程设置存在弊端。以往的小学教育数学课程设置上强调数学理论的本位思想。基于MPCK的视角,重视数学学科知识和学科教学知识,从培养学生的角度考虑如何提高学生的数学学科知识和学科教学知识。在课程的设置上,对数学课程进行学科间的整合,开设数学(高中数学),初等数论,小学数学教学与研究,小学教育专题(数学)4门主干课程。


  4.适应现阶段执行的3.5+1.5学制的需要。初等教育专业以往执行的是“4+1”学制模式,即在校学习四年,去小学进行教育实习1年。而今执行的是3.5+1.5学制式,即学生的前三年半的时间在校进行基础课程的学习,而后的1年半时间去小学进行教育实习和顶岗实习。在实习的一年半时间中,前半年,由学校统一调配安排,即教育实习;最后一年由学生进行自主实习,即顶岗实习。这就要求对该专业的数学课程设置进行调整,有些课程要提前,而且要在学生进行教育实习前完成教学任务。所以,根据现行学制的要求,也要对数学课程进行调整和整合。


  综上,基于MPCK理论,对初等教育专业数学课程进行学科内,课程间的互相整合是十分必要的。


  (二)数学课程的整合


  通过对在职的一线小学数学教师的调查研究发现,他们在数学学科知识和数学课程知识上的表现要优于对数学学科教学知识上的表现。很多教师和学生认为教育实习和顶岗实习过程是他们知识的最重要来源,而且印象深刻。同时,70%以上的一线教师认为教法课、微格教学对培养他们各方面知识也有比较重要的作用。多数教师反映,他们对高等数学学习过的知识内容已经没有印象,而且在平时的小学数学教学中基本用不到,对自身的学科知识的发展影响最小。[3]


  根据五年制学生的特点,初等教育专业的人才培养计划,以及前期调研的结果,调整初等教育专业的数学课程设置,将小学数学教学论和微格课程进行整合,调整为小学数学教学与研究;将以“极限、微积分”为主要内容的高等数学课程调整为小学教育专题(数学)课程。调整后,初等教育专业数学课程主要开设数学、初等数论、小学数学教学与研究以及小学教育专题(数学)这四门课程。与此同时,不可忽略作为教育实习的实践类课程。


  1.数学基础课的整合。数学基础课,通过课程的整合,将原本的两年半年的课程调整为两年的课程。从难度上来讲,要“够用”,即一方面满足三升本学生的升学的基本需求,另一方面满足大部分学生毕业后从事小学数学教育的知识储备。在基础课的教学中,改变以往的“唯考”的考核方式,而是加入多元化的评价体系。比如,在课堂教学中加入“课前小故事”、“一道数学题”等环节,要求每名学生在课前准备一个数学小故事,或是一道数学题,帮助学生练习用数学语言进行表达和讲解。同时,规范学生的数学语言,表达数学思想,建立数学与日常生活的联系,使学生知道数学与日常生活是息息相关的,不仅可以从多角度的对学生的数学学习进行评价,而且激励学生的学习兴趣。


  数论,作为初等教育专业的基础课。为了适应未来小学教育的需要,我们必须把握数论课程教学内容的侧重点,对初等数论各部分内容之间进行整合。同时要把重点放在定义、定理产生的背景及基本思想,使学生深入了解定义产生的客观需要、定理论证的整个思维过程,真正做到对小学数学知识的融会贯通。另外,把数论课程要注重数学思想方法的启迪和培养上。注意挖掘数论知识背后隐藏的数学思想方法,使学生深刻体会数论知识和解题中所使用的特殊方法,以提高学生自身的数学专业素养。在课程的整合上不仅要注重教学内容的整合,还要注重教学策略、方法上的整合。在初等数论课的教学时,我们注意将讲授的数论新知识与学生头脑中已有的数学知识相联系。初等数论在内容上系统完整、严谨,但同时又是与小学数学内容是联系最大的。所以,基于MPCK的视角,我们更应该在这门课程的教学上花大力气,为学生将来的实践、就业打下基础,以达到真正的学生数学素养的提升。


  2.数学专业课程的整合。根据小学数学教学论和数学微格课程的特点,对两门课程进行整合,开设小学数学教学与研究。这门课程主要在第四年的上学期开设,每周4课时。这门课程是数学课程中的核心课程,主要包括小学数学教学的指导性文件,小学数学教学的教学目标,内容以及小学数学各部分内容的教学方法,是将小学数学教学论和数学微格教学课程的整合。以往的教学仅是简单的“教育理论知识+实践训练”是远远不够的,而今是要细化教法课。将教案、听课笔记、说课稿的撰写拿到课堂上;将案例教学作为主要的授课方法,把一些优秀的教师教学案例、实习学生的教学案例拿到课堂上来,与学生一起“模拟课堂教学、点评和说课”,让学生在教学理论的指导下设计课堂教学,感受课堂教学理论。采取“走出去,请进来”的方式,改变以往的教学模式,将学生带进小学数学课堂,采取小组制到小学进行听课学习,促进学生的自我学习;与此同时,将一些小学中的优秀骨干教师请进课堂,为在校学生作讲座。小学数学教学与研究这门课程是理论和实践的有机结合,是MPCK理论的最佳体现。


  3.开设小学教育专题(数学)。将以“极限、微积分”为主要内容的高等数学课程调整为小学教育专题(数学)课程。这门课程在第四年的上学期开设,每周2课时。其主要内容是将以往已经学习的数学基本知识,基本原理进行了归纳,以增强师范生数学学习的连贯性。结合开设的初等数论、小学数学教学与研究(教法课),总结归纳小学数学中的基本概念与运算法则,数学的抽象、推理以及数学模型的思想。小学数学中的核心内容包括数的认识、运算,图形与几何,以及统计与概率四部分。在授课中主要采取的是讨论学习的方式,同时结合数学自身发展的时间顺序,对数学史的内容进行讲解。


  《义务教育手续课程标准(2011年版)》明确指出,通过义务教育阶段的数学学习,使学生能获得适应社会生活和进一步发展所需的数学的基本知识、基本技能、基本思想和基本活动经验。这是在传统意义上的“双基”的基础上提出“四基”。小学教育专题主要对数学产生和发展所必须依赖的数学灵魂——数学思想进行学习,并把数学思想上升到哲学的高度,与学生一起分析、思考。小学阶段的数学课程与日常生活息息相关,是生活化的数学。我们说,小学教育专题是在已学过的几门课程的基础上升华。[4]


  四、课程整合后的实施效果


  (一)课程整合有助于师范生的教学实践能力的提高


  基于MPCK理论,对初等教育专业数学课程的整合实施后,注重提高学生的数学学科知识和学科教学知识。作为初等教育专业数学类课程的4门主干课程,它们是相辅相成的,相互融合的。前两年的数学基础课,为后期的教法类课程、小学教育专题(数学)课程的学习提供了前提条件。而在后期的其他课程学习中又在无意识的巩固之前学习过的数学基本原理、思想。通过对课程的整合,帮助学生对数学知识整体结构及数学知识“来龙去脉”的过程的正确把握;另一方面,帮助学生对显性知识背后隐性的思想方法有清晰的认识,从而提高师范生的教学实践能力。


  (二)课程整合有助于师范生的专业素养的提升


  小学阶段的数学内容,包括基本概念和基本法则,都是数学最基础的,最本质的。所以,为初等教育转移的师范生应提供适合小学数学教研的手续专业课程,以提高师范生的手续学科水平。在课程整合中,考虑到教育实践复杂特征和需求,将课程整合与教育实践有机结合,实现理论和实践的循环往复,相互促进,进而师范生的专业素养得到进一步的提升。


  (三)课程整合与“3.5+1.5”人才培养模式相适应


  人才培养模式是“3.5+1.5”,即学生在前三年半的在校进行基础课程的学习,而后的一年半时间去小学进行教育实习和顶岗实习。课程整合方式与人才培养模式相适应,不仅能够帮助学生更好地理解消化在校期间学习的数学学科知识,数学学科教学知识,更能够帮助学生将二者有机的融合,将知识内容迅速内化,帮助其更好的成长,适应未来小学数学课程的教学,由“新手”教师迅速成长为“熟手”教师,为其将来就业能力的提升提供砝码。


  五、结语


  初等教育专业是培养小学教师的摇篮。数学课程是其专业课程的重要组成部分。结合MPCK理论,根据专业人才培养目标的要求,对数学课程进行了整合。课程实施后,效果是可以看到的,同时也存在着一些问题,有待将来进一步解决。

100%安全可靠 100%安全可靠
7X18小时在线支持 7X18小时在线支持
支付宝特邀商家 支付宝特邀商家
不成功全额退款 不成功全额退款